THE EFFECT OF CHOLESTEROL ON THE ADSORPTION OF ORGANOMETALLIC COMPOUNDS TO THE SPHINGOMIELINE LIPOSOME MEMBRANE

JANINA GABRIELSKA1, MAREK LANGNER2
and STANISŁAW PRZESTALSKI1

1Department of Physics and Biophysics, Agricultural University, Norwida 25, 50-375 Wrocław, Poland, 2Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspianskiego 27, 50-375 Wrocław, Poland

The adsorption of amphiphilic molecules depends, among other things, on their chemical structure and on the contents of the bilayer membrane. A sphingomieline (SF) bilayer was used as a model in studying the effect of cholesterol on the adsorption of three organometallic compounds: Ph\textsubscript{2}SnCl\textsubscript{2}, Ph\textsubscript{3}SnCl and Ph\textsubscript{3}PbCl. The degree of adsorption of the compounds was detected by measuring the intensity of fluoresceine-PE fluorescence. The probe’s fluorofore is located at the aqueous phase, adjacent to the membrane surface. Therefore, it reports the appearance of a charge at the membrane surface, induced by adsorbing organometallics.

The results of the study indicate that adsorption of Ph\textsubscript{3}SnCl on sphingomieline membranes is 17\% lower than on phosphatidylycholine membranes; and it is higher in the case of Ph\textsubscript{2}SnCl\textsubscript{2} and Ph\textsubscript{3}PbCl by 24 and 35\%, respectively. The presence of 30 mol\% cholesterol in SF membranes causes the adsorption to decrease compared with pure membranes by 60, 52 and 28\% for Ph\textsubscript{3}SnCl, Ph\textsubscript{2}SnCl\textsubscript{2} and Ph\textsubscript{3}PbCl. The results obtained may indicate the importance of cholesterol in decreasing the adsorption of the compounds on SF membranes, which may in general indicate a protective role of cholesterol.

This work was supported by the Polish Research Committee (KBN), grant No. 6PO4G 019 21.