CD4⁺CD25⁺ T regulatory cells (Treg) are a novel population of lymphocytes responsible for inhibition of the immune response against autoantigens. In this study, we assessed the capacity of Treg to regulate the cytotoxicity of CD8^{high+} T and NK cells in response to the antigens of the anti-influenza vaccine.

Blood samples of 25 donors vaccinated with the inactivated split anti-influenza vaccine in the epidemic season 2001/2002 were taken before, one month after and six months after the vaccination. The lymphocytes were separated into the following populations: CD14⁺, CD3⁺CD8⁺, CD16⁺, CD3⁺CD4⁺CD25⁺. Then CD3⁺CD8⁺ and CD16⁺ cells were mixed with CD4⁺CD25⁺ Treg cells and cultured for 48 hours in the presence of culture inserts containing CD14⁺ monocytes loaded with the antigens of the vaccine. The level of cytotoxicity was measured via cytometric tests measuring: the conjugates of K562 cells with CD16⁺ or CD3⁺CD8⁺ cells; the percentages of CD16⁺ and CD3⁺CD8⁺ cells secreting interferonγ (IFNγ) after stimulation <i>in vitro</i> with the antigens of the vaccine; and the cytotoxic activity in a colorimetric LDH-releasing test.

The cultures of both CD16⁺ and CD3⁺CD8⁺ cells mixed with Treg cells revealed a decreased secretion of IFNγ in response to anti-influenza antigens. However, only in the cultures containing the mixture of CD3⁺CD8⁺/Treg cells was there a decrease in the level of conjugates and cytotoxic activity.

Treg cells are able to modulate the response of CD8^{high+} T and NK cells to the antigens of the anti-influenza vaccine. Only the cytotoxicity of CD8^{high+} T lymphocytes stimulated by those antigens could be decreased by Treg cells.